International Rectifier #### **AUTOMOTIVE GRADE** ### AUIRGS30B60K AUIRGSL30B60K #### INSULATED GATE BIPOLAR TRANSISTOR #### **Features** - Low V_{CE(on)} Non Punch Through IGBT Technology - · 10µs Short Circuit Capability - Square RBSOA - Positive $V_{\text{CE(on)}}$ Temperature Coefficient - Maximum Junction Temperature rated at 175°C - · Lead-Free, RoHS Compliant - Automotive Qualified * - · Benchmark Efficiency for Motor Control - Rugged Transient Performance - Low EMI - · Excellent Current Sharing in Parallel Operation | G | С | E | |------|-----------|---------| | Gate | Collector | Emitter | #### **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified | | Parameter | Max. | Units | |---|---|-----------------------------------|-------| | V _{CES} | Collector-to-Emitter Voltage | 600 | V | | $I_{C} @ T_{C} = 25^{\circ}C$ | Continuous Collector Current | 78 | | | I _C @ T _C = 100°C | Continuous Collector Current | 50 | Α | | I _{CM} | Pulse Collector Current (Ref.Fig.C.T.5) | 120 | | | I _{LM} | Clamped Inductive Load current ① | 120 | | | V_{ISOL} | RMS Isolation Voltage, Terminal to Case, t=1 min. | 2500 | V | | V_{GE} | Gate-to-Emitter Voltage | ±20 | | | $P_D @ T_C = 25^{\circ}C$ | Maximum Power Dissipation | 370 | W | | $P_D @ T_C = 100^{\circ}C$ | Maximum Power Dissipation | 180 | | | $T_{\rm J}$ | Operating Junction and | -55 to +175 | | | T _{STG} | Storage Temperature Range | | °C | | | Soldering Temperature, for 10 sec. | 300 (0.063 in. (1.6mm) from case) | | #### Thermal / Mechanical Characteristics | | Parameter | Min. | Тур. | Max. | Units | |-----------------|--|------|------|-------|-------| | $R_{ heta JC}$ | Junction-to-Case- IGBT | | | 0.41* | | | $R_{\theta CS}$ | Case-to-Sink, flat, greased surface | | 0.50 | | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient (PCB Mount, Steady State)@ | | | 40 | | | Wt | Weight | | 1.44 | | g | ^{*} $R_{\theta JC}$ (end of life) = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. #### Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | Ref.Fig. | |---------------------------------|---|------|------|------|-------|---|----------| | V _{(BR)CES} | Collector-to-Emitter Breakdown Voltage | 600 | | | V | $V_{GE} = 0V, I_{C} = 500 \mu A$ | | | $\Delta V_{(BR)CES}/\Delta T_J$ | Temperature Coeff. of Breakdown Voltage | _ | 0.40 | _ | V/°C | $V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-150^{\circ}C)$ | | | V _{CE(on)} | Collector-to-Emitter Voltage | _ | 1.95 | 2.35 | | $I_C = 30A$, $V_{GE} = 15V$, $T_J = 25$ °C | 5,6,7 | | | | _ | 2.40 | 2.75 | V | $I_C = 30A$, $V_{GE} = 15V$, $T_J = 150$ °C | 8,9,10 | | | | _ | 2.6 | 2.95 | | $I_C = 30A, V_{GE} = 15V, T_J = 175^{\circ}C$ | | | V _{GE(th)} | Gate Threshold Voltage | 3.5 | 4.5 | 5.5 | V | $V_{CE} = V_{GE}$, $I_C = 250\mu A$ | 8,9,10 | | $\Delta V_{GE(th)}/\Delta T_J$ | Threshold Voltage temp. coefficient | _ | -10 | _ | mV/°C | $V_{CE} = V_{GE}, I_{C} = 1.0 \text{mA} (25^{\circ}\text{C}-150^{\circ}\text{C})$ | 11 | | gfe | Forward Transconductance | _ | 18 | _ | S | $V_{CE} = 50V, I_{C} = 50A, PW = 80\mu s$ | | | I _{CES} | Zero Gate Voltage Collector Current | _ | 5.0 | 250 | | $V_{GE} = 0V, V_{CE} = 600V$ | | | | | _ | 1000 | 2000 | μΑ | $V_{GE} = 0V, V_{CE} = 600V, T_{J} = 150^{\circ}C$ | | | | | _ | 1830 | 3000 | | $V_{GE} = 0V, V_{CE} = 600V, T_{J} = 175^{\circ}C$ | | | I _{GES} | Gate-to-Emitter Leakage Current | _ | _ | ±100 | nA | $V_{GE} = \pm 20V, V_{CE} = 0V$ | | #### Static or Switching Characteristics @ $T_J = 25$ °C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | Ref.Fig. | |------------------------|--------------------------------------|------|-------|------|-------|---|----------| | Q_g | Total Gate Charge (turn-on) | _ | 102 | 153 | | $I_C = 30A$ | 17 | | Q_{ge} | Gate-to-Emitter Charge (turn-on) | _ | 14 | 21 | nC | $V_{CC} = 400V$ | CT1 | | Q _{gc} | Gate-to-Collector Charge (turn-on) | _ | 44 | 66 | | $V_{GE} = 15V$ | | | E _{on} | Turn-On Switching Loss | _ | 350 | 620 | | $I_C = 30A, V_{CC} = 400V$ | CT4 | | E _{off} | Turn-Off Switching Loss | _ | 825 | 955 | μJ | $V_{GE} = 15V, R_G = 10\Omega, L = 200\mu H$ | | | E _{tot} | Total Switching Loss | _ | 1175 | 1575 | | T _J = 25°C ③ | | | t _{d(on)} | Turn-On delay time | _ | 46 | 60 | | $I_C = 30A, V_{CC} = 400V$ | | | t _r | Rise time | _ | 28 | 39 | ns | $V_{GE} = 15V, R_G = 10\Omega, L = 200\mu H$ | CT4 | | t _{d(off)} | Turn-Off delay time | _ | 185 | 200 | Ī | $T_J = 25^{\circ}C$ | | | t _f | Fall time | _ | 31 | 40 | Î | | | | E _{on} | Turn-On Switching Loss | _ | 635 | 1085 | | $I_C = 30A, V_{CC} = 400V$ | CT4 | | E _{off} | Turn-Off Switching Loss | _ | 1150 | 1350 | μJ | $V_{GE} = 15V, R_G = 10\Omega, L = 200\mu H$ | 12,14 | | E _{tot} | Total Switching Loss | _ | 1785 | 2435 | Ī | T _J = 150°C ③ | WF1,WF | | t _{d(on)} | Turn-On delay time | _ | 46 | 60 | | $I_C = 30A, V_{CC} = 400V$ | 13,15 | | t _r | Rise time | _ | 28 | 39 | ns | $V_{GE} = 15V, R_G = 10\Omega, L = 200\mu H$ | CT4 | | t _{d(off)} | Turn-Off delay time | _ | 205 | 235 | Ī | T _J = 150°C | WF1 | | t _f | Fall time | _ | 32 | 42 | | | WF2 | | L _E | Internal Emitter Inductance | _ | 7.5 | _ | nΗ | Measured 5mm from package | | | C _{ies} | Input Capacitance | _ | 1750 | _ | | $V_{GE} = 0V$ | | | C _{oes} | Output Capacitance | _ | 160 | _ | pF | $V_{CC} = 30V$ | 16 | | C _{res} | Reverse Transfer Capacitance | _ | 60 | _ | Ī | f = 1.0MHz | | | RBSOA | Reverse Bias Safe Operating Area | FUL | L SQU | ARE | | $T_J = 150$ °C, $I_C = 120$ A, $Vp = 600$ V | 4 | | | | | | | | $V_{CC} = 500 \text{ V}, V_{GE} = +15 \text{ V to } 0 \text{ V}, R_G = 10 \Omega$ | CT2 | | SCSOA | Short Circuit Safe Operating Area | 10 | _ | _ | μs | $T_J = 150^{\circ}C$, $Vp = 600V$, $R_G = 10\Omega$ | CT3 | | | | | | | | $V_{CC}=360V, V_{GE}=+15V \text{ to } 0V$ | WF3 | | I _{SC} (Peak) | Peak Short Circuit Collector Current | _ | 200 | _ | Α | | WF3 | #### Notes: - ① V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 28 μ H, R_G = 22 Ω . - ② This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. - ③ Energy losses include "tail" and diode reverse recovery. #### Qualification Information[†] | | | Automotive | | | | | |------------------|----------------------|--|------------------|--|--|--| | | | (per AEC-Q101) ^{††} | | | | | | Qualification Le | evel | Comments: This part number(s) passed Automotiv qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotivity. | | | | | | | | D ² PAK | MSL1 ††† | | | | | Moisture Sensit | tivity Level | (per IPC/JEDEC J-STD-02 | | | | | | | | TO-262 | N/A | | | | | Machine Model | | Class M4 (400V) | | | | | | | | AEC-Q101-002 | | | | | | FOD | Human Body Model | Class H2 (4000V) | | | | | | ESD | | AEC-Q101-001 | | | | | | | Charged Device Model | | Class C4 (1000V) | | | | | | | AEC-Q101-005 | | | | | | RoHS Complian | nt | Yes | | | | | - † Qualification standards can be found at International Rectifier's web site: http://www.irf.com - †† Exceptions to AEC-Q101 requirements are noted in the qualification report. - ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information. 400 350 300 250 200 150 100 50 0 20 40 60 80 100 120 140 160 180 T_C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature Fig. 4 - Reverse Bias SOA $T_J = 150$ °C; $V_{GE} = 15V$ **Fig. 5** - Typ. IGBT Output Characteristics $T_J = -40$ °C; $tp = 80\mu s$ **Fig. 6** - Typ. IGBT Output Characteristics $T_J = 25^{\circ}\text{C}$; tp = 80µs Fig. 7 - Typ. IGBT Output Characteristics $T_J = 150^{\circ}\text{C}$; tp = 80 μ s 20 18 16 14 12 I_{CE} = 15A IcE = 30A 10 <u>Ice = 60A</u> 8 6 4 2 0 5 10 20 15 $V_{GE}(V)$ Fig. 8 - Typical V_{CE} vs. V_{GE} $T_J = -40^{\circ}C$ Fig. 9 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$ Fig. 10 - Typical V_{CE} vs. V_{GE} $T_{J} = 150^{\circ}C$ Fig. 11 - Typ. Transfer Characteristics $V_{CE} = 50V$; tp = $10\mu s$ Fig. 12 - Typ. Energy Loss vs. I_C T_J = 150°C; L=200μH; V_{CE} = 400V, R_G = 10Ω; V_{GE} = 15V Fig. 13 - Typ. Switching Time vs. I_C $T_J = 150^{\circ}C$; L=200 μ H; V_{CE} = 400V R_G = 10 Ω ; V_{GE} = 15V Fig. 14 - Typ. Energy Loss vs. R_G T_J = 150°C; L=200 μ H; V_{CE} = 400V I_{CE} = 30A; V_{GE} = 15V Fig. 15 - Typ. Switching Time vs. R_G T_J = 150°C; L=200 μ H; V_{CE} = 400V I_{CE} = 30A; V_{GE} = 15V Fig. 16- Typ. Capacitance vs. V_{CE} $V_{GE} = 0V$; f = 1MHz Fig. 17 - Typical Gate Charge vs. V_{GE} $I_{CE} = 30A$; $L = 600\mu H$ Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.5 - Resistive Load Circuit 700 70 600 60 500 50 TEST CURRENT 400 40 VCE (V) 30 90% test current 200 20 10% test current 100 10 0 0 Eon Loss -100 -10 15.90 16.00 16.30 16.10 16.20 Time (µs) Fig. WF1- Typ. Turn-off Loss Waveform $@T_J = 150^{\circ}\text{C}$ using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ $T_J = 150$ °C using Fig. CT.4 Fig. WF3- Typ. S.C Waveform @ $T_C = 150$ °C using Fig. CT.3 #### TO-262 Package Outline Dimensions are shown in millimeters (inches) ### TO-262 Part Marking Information Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ ### D²Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 - 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H. 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1. 5. DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY. - 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H. - 7. CONTROLLING DIMENSION: INCH. - 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB. | S
Y | | Ŋ | | | | | |-------------|--------|-------|-----------|----------|-----|--| | M
B
O | MILLIM | ETERS | INC | O T E | | | | Ĺ | MIN. | MAX. | MIN. | MAX. | E | | | Α | 4.06 | 4.83 | ,160 | ,190 | | | | A1 | 0.00 | 0.254 | .000 | .010 | | | | ь | 0.51 | 0.99 | .020 | .039 | | | | ь1 | 0,51 | 0.89 | .020 | .035 | 5 | | | b2 | 1,14 | 1,78 | .045 | .070 | | | | b3 | 1,14 | 1,73 | .045 | .068 | 5 | | | c | 0.38 | 0.74 | .015 | .029 | | | | c1 | 0.38 | 0.58 | .015 .023 | | 5 | | | c2 | 1,14 | 1.65 | .045 | .065 | | | | D | 8,38 | 9.65 | .330 | .380 | 3 | | | D1 | 6.86 | - | .270 | | 4 | | | E | 9.65 | 10.67 | .380 | .420 | 3,4 | | | E1 | 6.22 | - | .245 | | 4 | | | e | 2,54 | BSC | .100 | BSC | | | | н | 14.61 | 15.88 | .575 | .625 | | | | L | 1.78 | 2.79 | .070 | .110 | | | | L1 | - | 1,65 | - | .066 | 4 | | | L2 | 1,27 | 1,78 | - | .070 | | | | L3 | 0.25 | BSC | .010 | .010 BSC | | | | L4 | 4.78 | 5.28 | .188 | .208 | | | #### LEAD ASSIGNMENTS #### HEXFET 1,- GATE 2, 4.- DRAIN 3,- SOURCE #### IGBTs, CoPACK 1.- GATE 2. 4.- COLLECTOR 3.- EMITTER #### DIODES - 1,- ANODE * 2, 4,- CATHODE 3.- ANODE - * PART DEPENDENT. ### D²Pak (TO-263AB) Part Marking Information Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ ### D²Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) - NOTES: 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION MEASURED @ HUB. - INCLUDES FLANGE DISTORTION @ OUTER EDGE. **Ordering Information** | Base part number | Package Type | Standard Pack | Complete Part Number | | |------------------|--------------|---------------------|----------------------|-----------------| | | | Form | Quantity | | | AUIRGSL30B60K | TO-262 | Tube | 50 | AUIRGSL30B60K | | AUIRGS30B60K | D2Pak | Tube | 50 | AUIRGS30B60K | | | | Tape and Reel Left | 800 | AUIRGS30B60KTRL | | | | Tape and Reel Right | 800 | AUIRGS30B60KTRR | International TOR Rectifier ### AUIRGS/SL30B60K #### **IMPORTANT NOTICE** Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ #### WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105