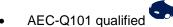

STTH1R02-Y



Automotive ultrafast rectifier

Datasheet - production data

Features

- Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature
- ECOPACK®2 compliant component
- V_{RRM} guaranteed from -40 to +175 °C
- PPAP capable

Description

The STTH1R02-Y is an ultrafast recovery rectifier used for energy recovery in automotive applications, housed in a SOD123Flat package for improved space saving.

It is especially designed for reverse battery protection function in all automotive application.

The compromise between forward voltage drop and recovery time offers optimized performances.

Table 1: Device summary

Symbol	Value
l _{F(AV)}	1 A
V _{RRM}	200 V
T _j (max.)	175 °C
V _F (typ.)	0.75 V
t _{rr} (typ.)	25 ns

Characteristics STTH1R02-Y

1 Characteristics

Table 2: Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	P	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	T _j = -40 °C	200	٧
I _{F(AV)}	Average forward current	T_{lead} = 153 °C , δ = 0.5 square wave	1	Α
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$		25	Α
T _{stg}	Storage temperature range		-65 to +175	°C
Tj	Maximum operating junction temperature		-40 to +175	°C

Table 3: Thermal parameter

Symbol	Parameter	Maximum	Unit
R _{th(j-l)}	Junction to lead	23	°C/W

Table 4: Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	1) Devemos la else de essent	T _j = 25 °C	$V_R = V_{RRM}$	-		0.5	μΑ
IR ^(*)	Reverse leakage current	T _j = 125 °C		-	1	10	μΑ
V _F ⁽²⁾ Forward vo	Forward voltage drop	T _j = 25 °C	I _F = 1 A	•	0.87	1.00	V
		T _j = 125 °C		-	0.75	0.85	

Notes:

 $^{(1)}\text{Pulse}$ test: t_p = 5 ms, δ < 2%

 $^{(2)}$ Pulse test: tp = 380 µs, δ < 2%

To evaluate the conduction losses, use the following equation:

 $P = 0.75 \times I_{F(AV)} + 0.1 \times I_{F^2(RMS)}$

Table 5: Dynamic electrical characteristics

Symbol	Parameters	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time	$I_F = 1 \text{ A}$ $dI_F/dt = 50 \text{ A/}\mu\text{s}$ $V_R = 30 \text{ V}$ $T_j = 25 \text{ °C}$	-	25	32	ns
		I _F = 1 A	-	30		
I _{RM}	Reverse recovery current	dl _F /dt = 100 A/µs V _R = 160 V	-	2.2		Α
Qrr	Reverse recovery charges	$T_j = 125 ^{\circ}\text{C}$	-	34		nC

STTH1R02-Y Characteristics

I_{F(AV)}(A)

1.0

0.8

1.1 **Characteristics (curves)**

0.0

0.0

0.2

0.4

Figure 1: Average forward power dissipation versus average forward current 1.2 $\delta = 0.05 - \delta = 0.1$ 1.0 $\delta = 0.5$ 0.8 0.6 0.4 0.2

Figure 2: Forward voltage drop versus forward current (typical values) 10.00 F(A) 1.00 0.10 V_F(V) 0.01 0.0 0.2 0.4 0.6 8.0 1.0 1.2 1.4 1.6

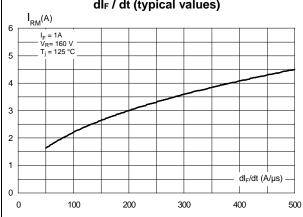
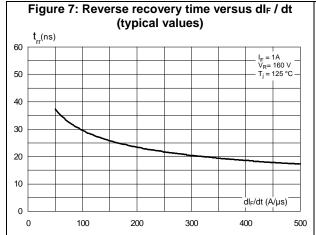
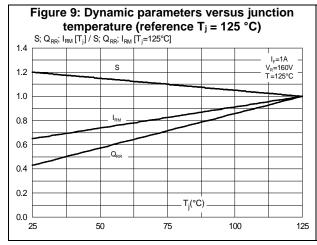
Figure 3: Forward voltage drop versus forward current (maximum values)

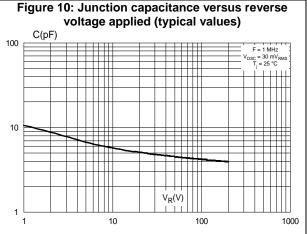
0.6

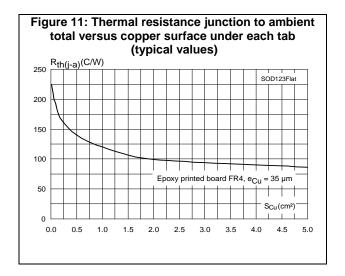
I_F(A) 1.00 0.10 V**⊏**(V) 0.01 0.8 1.0 1.2 0.6 1.8

Figure 4: Relative variation of thermal impedance junction to lead versus pulse duration $Z_{\text{th(j-l)}}/R_{\text{th(j-l)}}$ 1.0 0.9 Single pulse 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1.E-04 1.E-01 1.E+01 1.E-03

Figure 5: Peak reverse recovery current versus dl_F / dt (typical values)


Figure 6: Reverse recovery charges versus dl_F / dt (typical values) $Q_{rr}(nC)$ 80 I_F = 1A V_R= 160 V T_i = 125 °C 60 20 dl_F/dt (A/µs) 0 0 100 200 300


Characteristics STTH1R02-Y

STTH1R02-Y Package information

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

2.1 SOD123Flat package information

Figure 12: SOD123Flat package outline

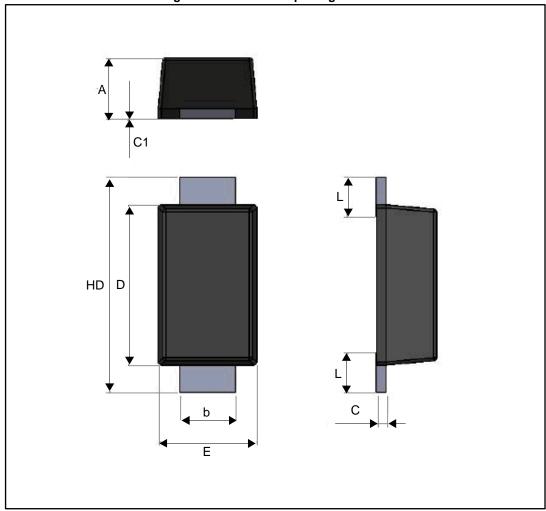
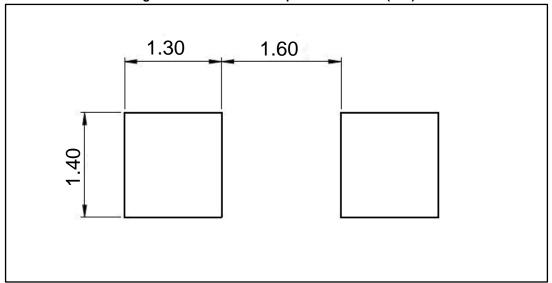



Table 6: SOD123Flat package mechanical data

		Dimensions	
Ref.	Millimeters		
	Min.	Тур.	Max.
А	0.86	0.98	1.10
b	0.80	0.90	1.00
С	0.08	0.15	0.25
c1	0.00		0.10
D	2.50	2.60	2.70
Е	1.50	1.60	1.80
HD	3.30	3.50	3.70
L	0.45	0.65	0.85

Figure 13: SOD123Flat footprint dimensions (mm)

STTH1R02-Y Ordering information

3 Ordering information

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH1R02ZFY	1Y2	SOD123Flat	12.5 mg	3000	Tape and reel

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
06-Feb-2017	1	First issue

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

