

DEMO MANUAL DC765B

LT3479 General Purpose Positive/ Negative Converters

DESCRIPTION

Demonstration circuit 765B is a general purpose 1MHz, positive and negative converters featuring the LT3479EDE. The demo circuit demonstrates small size and low component count in a boost circuit and an inverting circuit. The boost converter is set up to convert a 2.5V to 4.2V input to 7V output at 600mA. The inverting circuit generates a –5V output at 600mA from an input of 2.5V to 12V.

Both circuits demonstrate the capacitor programmable soft-start feature, advantages of the 1MHz constant switching frequency and the internal 42V switches. Both

outputs on this demo circuit can be modified for higher voltages. These circuits are intended for space-conscious applications such as high power LED drivers, DSL modems and distributed power.

Design files for this circuit board are available at http://www.linear.com/demo/DC765B

∠T, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETERS FOR BOOST CIRCUIT	CONDITION	VALUE	
Minimum Input Voltage		2.5V	
Maximum Input Voltage		4.2V	
Output Voltage V _{OUT}	V _{IN} = 2.5V to 4.2V	7V ±3%	
Typical Efficiency	V _{IN} = 3.3V, V _{OUT} = 7V at 600mA	85%	
Typical Output Ripple V _{OUT} as Regular Boost Converter	V _{IN} = 3.3V, V _{OUT} = 7V at 600mA	60mV	
PARAMETERS FOR INVERTING CIRCUIT		VALUE	
Output Voltage V _{OUT}	V _{IN} = 2.5V, I _{OUT} = 0mA to 600mA	-5V ±3%	
Output Voltage V _{OUT}	V _{IN} = 12V, I _{OUT} = 0mA to 600mA	-5V ±3%	
Typical Output Ripple V _{OUT}	V _{IN} = 3.3V, I _{OUT} = 600mA	10mV _{P-P}	
Typical Efficiency	$V_{IN} = 7V$, $V_{OUT} = -5$ at 600mA	74%	

Input capacitors C16 and C17 used only for operation with long inductive input leads.

QUICK START PROCEDURE

Demonstration circuit 765B is easy to set up to evaluate the performance of the LT3479EDE. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

 When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OLIT} and GND terminals. See Figure 1 for proper scope probe technique.

For boost converter circuit:

- 1. Place jumper in the ON position.
- 2. With power off, connect the input power supply to V_{IN} and GND.
- 3. Turn input supply on and apply 2.5V to 4.2V to the input.

4. Once the proper output voltages are established, adjust the input voltage within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

For inverter circuit:

- 1. Place jumper in the ON position.
- 2. With power off, connect the input power supply to V_{IN} and GND.
- 3. Turn input supply on and apply 2.5V to 12V to the
- 4. Once the proper output voltages are established, adjust the input and load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

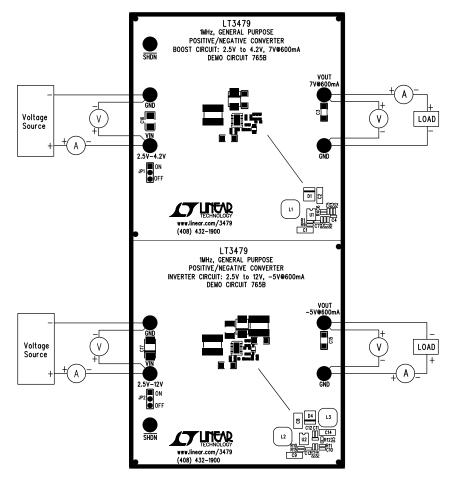


Figure 1. DC765B Proper Equipment Setup

dc765hf

QUICK START PROCEDURE

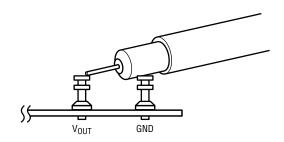


Figure 2. Measuring Input or Output Ripple

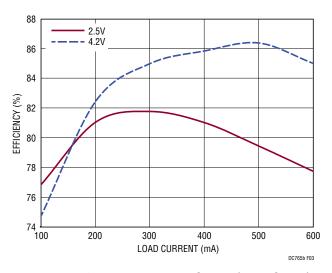
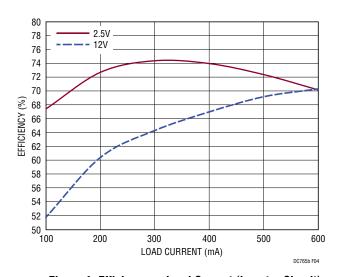
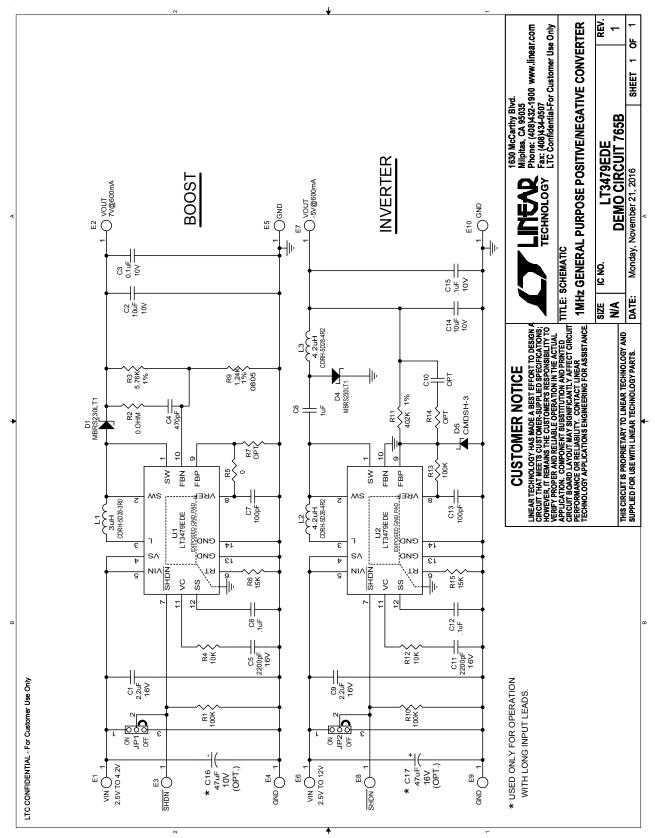


Figure 3. Efficiency vs Load Current (Boost Circuit)




Figure 4. Efficiency vs Load Current (Inverter Circuit)

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Required Circuit Components					
1	1	C4	CAP, X7R, 470pF, 16V, 10%, 0402	AVX 0402YC471KAT2A	
2	2	C2, C14	CAP, X5R, 10µF, 10V, 10%, 1206	AVX 1206ZD106KAT2A	
3	2	C5, C11	CAP, X7R, 2200pF, 16V, 10%, 0402	AVX 0402YC222KAT2A	
4	2	C3, C15	CAP, X7R, 0.1µF, 10V, 10%, 1206	AVX 1206ZC104KAT2A	
5	2	C1, C9	CAP, X5R, 2.2µF, 16V, 10%, 1206	AVX 1206YD225KAT2A	
6	2	C6, C12	CAP, X7R, 0.1µF, 16V, 10%, 0402	MURATA GRM155R71C104KA01	
7	2	C7, C13	CAP, X7R, 100pF, 16V, 10%, 0402	AVX 0402YC101KAT2A	
8	1	C8	CAP, X5R, 1μF, 25V, 10%, 1210	AVX 12103D105KAT2A	
9	2	D1, D4	DIODE, MBRS230LT1	ONSEMI MBRS230LT1	
10	1	D5	DIODE,	CENTRAL SEMI CMDSH-3-LTC	
11	1	L1	INDUCTOR, 3µH	SUMIDA CDRH5D28-3R0	
12	2	L2, L3	INDUCTOR, 4.2µH	SUMIDA CDRH5D28-4R2	
13	3	R1, R10, R13	RES, CHIP, 100k, 1/16W, 5%, 0402	VISHAY, CRCW0402100KJNED	
14	2	R2, R5	RES, CHIP, 0Ω 0402	VISHAY, CRCW04020000Z0ED	
15	1	R3	RES, CHIP, 5.76k, 1/16W, 1%, 0402	VISHAY, CRCW04025K76FKED	
16	2	R4, R12	RES, CHIP, 10k, 1/16W, 5%, 0402	VISHAY, CRCW040210K0JNED	
17	1	R9	RES, CHIP, 1.24k, 1/16W, 1%, 0805	VISHAY, CRCW08051K24FKEA	
18	1	R11	RES, CHIP, 402k, 1/16W, 1%, 0402	VISHAY, CRCW0402402KFKED	
19	2	R6, R15	RES, CHIP, 15k, 1/16W, 1%, 0402	VISHAY CRCW040215K0FKED	
20	2	U1, U2	IC, LT3479EDE, 14 PIN DFN	LINEAR LT3479EDE#PBF	
Additional Demo Board Circuit Components					
1	0	C10 (OPT)	CAP, 0402		
2	1	C16 (OPT)	CAP, TANT, 47µF, 10V, 20%, (B-SIZE)	AVX, TAJB476M010R	
3	1	C17 (OPT)	CAP, TANT, 47µF, 16V, 20%, (C-SIZE)	AVX, TAJC476M016R	
4	0	R7, R14 (OPT)	RES, CHIP, 0402	OPT	
Hardware: For Demo Board Only					
1	10	E1 T0 E10	TURRETS, TERMINAL	MILL-MAX 2501-2	
2	2	XJP1, XJP2	SHUNT, 2PIN, 3MM	COMM CON CCIJ2MM-138-GW	
3	2	JP1, JP2	CONN, HDR, 3 PIN. 0.079 2MM	COMM CON CONN 2802S-03G2	

SCHEMATIC DIAGRAM

DEMO MANUAL DC765B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

