2:1 1.8V PCIe Gen1-2-3 Clock Mux with Zo=100ohms

9DMV0141

DATASHEET

Description

The 9DMV0141 is a member of IDT's SOC-Friendly 1.8V Very-Low-Power (VLP) PCIe Gen1-2-3 family. It has integrated output terminations providing Zo=100 Ω for direct connection to 100 Ω transmission lines. The output has an OE# pin for optimal system control and power management. The part provides asynchronous or glitch-free switching modes.

Typical Application

2:1 PCIe Gen1-2-3 Clock Multiplexer

Output Features

• 1 -Low-Power (LP) HCSL DIF pair w/Zo=100 Ω

Key Specifications

- DIF *additive* cycle-to-cycle jitter <5ps
- DIF phase jitter is PCIe Gen1-2-3 compliant
- 125MHz additive phase jitter 420fs rms typical (12kHz to 20MHz)

Block Diagram

Features

- LP-HCSL output w/integrated terminations; saves 4 resistors compared to standard HCSL output
- 1.8V operation; 12mW typical power consumption
- Selectable asynchronous or glitch-free switching; allows the mux to be selected at power up even if both inputs are not running, then transition to glitch-free switching mode
- Spread Spectrum Compatible; supports EMI reduction
- OE# pins; support DIF power management
- HCSL differential inputs; can be driven by common clock sources
- 1MHz to 200MHz operating frequency
- Configuration can be accomplished with strapping pins; SMBus interface not required for device control
- Space saving 16-pin 3x3mm VFQFPN; minimal board space

Pin Configuration

16-pin VFQFPN, 3x3 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor v prefix indicates internal 120KOhm pull down resistor

Note: Paddle may be connected to ground for thermal purposes. It is not required electrically.

Power Management Table

OEx# Pin	DIF IN	D	Fx		
		True O/P	Comp. O/P		
0	Running	Running	Running		
1	Running	Low	Low		

Power Connections

Pin Nu	umber	Description			
VDD	GND	- Description			
2	1	Input A receiver analog			
3	4	Input B receiver analog			
12	11	DIF outputs			

Pin Descriptions

Pin#	Pin Name	Туре	Pin Description
1	GNDR	GND	Analog Ground pin for the differential input (receiver)
2	VDDR1.8	PWR	1.8V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
3	VDDR1.8	PWR	1.8V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
4	GNDR	GND	Analog Ground pin for the differential input (receiver)
5	DIF_INB	IN	HCSL Differential True input
6	DIF_INB#	IN	HCSL Differential Complement Input
7	vSW_MODE	IN	Switch Mode. This pin selects either asynchronous or glitch-free switching of the mux. Use asynchronous mode if 0 or 1 of the input clocks is running. Use glitch-free mode if both input clocks are running. This pin has an internal pull down resistor of ~120kohms. 0 = asynchronous mode 1 = glitch-free mode
8	^OE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-up resistor. 1 =disable outputs, 0 = enable outputs
9	DIF0	OUT	Differential true clock output
10	DIF0#	OUT	Differential Complementary clock output
11	GND	GND	Ground pin.
12	VDD1.8	PWR	Power supply, nominal 1.8V
13	NC	N/A	No Connection.
14	^SEL_A_B#	IN	Input to select differential input clock A or differential input clock B. This input has an internal pull-up resistor. 0 = Input B selected, 1 = Input A selected.
15	DIF_INA	IN	HCSL Differential True input
16	DIF_INA#	IN	HCSL Differential Complement Input

Test Loads

Driving LVDS

Driving LVDS inputs

	``	Value			
	Receiver has Receiver does not				
Component	termination	have termination	Note		
R7a, R7b	10K ohm	140 ohm			
R8a, R8b	5.6K ohm	75 ohm			
Cc	0.1 uF	0.1 uF			
Vcm	1.2 volts	1.2 volts			

Electrical Characteristics–Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Applies to all VDD pins	-0.5		2.5	V	1,2
Input Voltage	V _{IN}		-0.5		V_{DD} +0.5V	V	1, 3
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.6V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

····, ·······························							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxx	Applies to all VDD pins	1.7	1.8	1.9	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	$0.75 V_{DD}$		V _{DD} + 0.3	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		$0.25 V_{DD}$	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 V$; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	F _{ibyp}		1		200	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	CIN	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCIe	f _{MODINPCIe}	Allowable Frequency for PCIe Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable Frequency for non-PCIe Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	t _{LATOE} #	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	1,2
Trise	t _R	Rise time of single-ended control inputs			5	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

Electrical Characteristics–Clock Input Parameters

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS MIN TYP M		MAX	UNITS	NOTES	
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs 300 750 1150 n (single-ended measurement)		mV	1		
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	200		725	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.35		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential waveform	45	50	55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics–DIF Low-Power HCSL Outputs

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1.8	3.0	4.2	V/ns	1,2,3
Slew rate matching	∆Trf	Slew rate matching, Scope averaging on		3	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	783	850	mV	
Voltage Low	V _{LOW}	averaging on)	-150	26	150		
Max Voltage	Vmax	Measurement on single ended signal using		790	1150	mV	
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	9		IIIV	
Vswing	Vswing	Scope averaging off	300	1514		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	393	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		12	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

Electrical Characteristics–Current Consumption

 $TA = T_{AMB}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDOP}	VDD rails, All outputs active @100MHz		7.9	12	mA	
Disable Current	IDDDIS	VDD rails, All outputs disabled Low/Low		1.5	2.5	mA	2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Input clock stopped after outputs have parked Low/Low.

Electrical Characteristics–Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	Measured differentially, @100MHz	-1	-0.12	1	%	1,3
Skew, Input to Output	t _{pdBYP}	V _T = 50%	1853	2409	3132	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock.

Electrical Characteristics–Phase Jitter Parameters

 $TA = T_{AMB}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						INDUSTRY		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		1.3	5	N/A	ps (p-p)	1,2,3,5
	t _{jphPCleG2}	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.3	N/A	ps (rms)	1,2,3,4 ,5
Additive Phase Jitter,		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.1	0.2	N/A	ps (rms)	1,2,3,4
Bypass Mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.065	0.1	N/A	ps (rms)	1,2,3,4
	t _{jph125M0}	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		284	350	N/A	fs (rms)	1,6
	t _{jph125M1}	125MHz, 12KHz to 20MHz, -20dB/decade rollover < 12kHz, -40db/decade rolloff > 20MHz		420	500	N/A	fs (rms)	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]

⁵ Driven by 9FGV0831 or equivalent

⁶ Driven by Rohde & Schwartz SMA100

Marking Diagram

Notes:

- 1. "XXX" is the last 3 characters of the lot number.
- 2. "YYWW" is the last two digits of the year and week that the part was assembled.
- 3. Line 3: truncated part number
- 4. "L" denotes RoHS compliant package.
- 5. "I" denotes industrial temperature grade.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ _{JC}	Junction to Case		66	°C/W	1
	θ_{Jb}	Junction to Base		5	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air		63	°C/W	1
mermar Resistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NLG16	56	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		51	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow	1	49	°C/W	1

¹ePad soldered to board

Package Outline and Dimensions (NLG16P2)

() IDT.

16-QFN Package Outline Drawing

3.0 x 3.0 x 1.0 mm, 0.5 mm Pitch 16-QFN, 1.70 x 1.70 mm Epad NL/NLG16P2, PSC-4169-02, Rev 02, Page 1

© Integrated Device Technology, Inc.

Package Outline and Dimensions (NLG16P2), cont.

16-QFN Package Outline Drawing

3.0 x 3.0 x 1.0 mm, 0.5 mm Pitch 16-QFN, 1.70 x 1.70 mm Epad NL/NLG16P2, PSC-4169-02, Rev 02, Page 2

© Integrated Device Technology, Inc.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DMV0141AKILF	Trays	16-pin VFQFPN	-40 to +85° C
9DMV0141AKILFT	Tape and Reel	16-pin VFQFPN	-40 to +85° C

"LF" to the suffix denotes Pb-Free configuration, RoHS compliant.

"A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page #
			1. Update front page text and electrical tables with char data.	
Α	RDW	9/29/2014	2. Update pinout diagram with note about package paddle.	Various
			3. Move to final.	
В	RDW	1/26/2015	Updated package drawing to the latest NLG16 document.	
С	RDW	5/11/2007	Updated package drawing to the latest NLG16 document.	8,9
D	RDW	8/15/2017	Updated package drawing to NLG16P2 document.	8,9

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, CA 95138 USA

www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775

www.IDT.com/go/sales

Tech Support

www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.