

AVO100-48S1V2

60 Watts Eighth-brick Converter

Total Power:60 WattsInput Voltage:36 to 75 Vdc# of Outputs:Single

Special Features

- Delivering up to 50A output
- Ultra-high efficiency 89% typ. at half load
- Wide input range: 36V ~ 75V
- Excellent thermal performance
- No minimum load requirement
- Intended for reflow or wave soldering
- · RoHS 6 compliant
- · Remote control function
- Remote output sense
- Trim function: 80% ~ 110%
- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- Over temperature protection
- Industry standard eighth-brick
- Pin length option:3.8mm

Safety

IEC/EN/UL/ 60950-1 CE Mark UL/TUV GB4943

Product Descriptions

The AVO100-48S1V2 is a single output DC/DC converter with standard eighthbrick form factor and pin configuration. It delivers up to 50A output current with 1.2V output. Ultra-high 89% efficiency and excellent thermal performance makes it an ideal choice for use in datacom and telecommunication applications and can operate over an ambient temperature range of -40 $^{\circ}$ C ~ +85 $^{\circ}$ C.

Applications

Telecom/ Datacom

Model Numbers

Standard	Output Voltage	Structure	Remote ON/OFF logic	RoHS Status
AVO100-48S1V2-6L	1.2Vdc	Open-frame	Negative	R6
AVO100-48S1V2P-6L	1.2Vdc	Open-frame	Positive	R6
AVO100-48S1V2B-6L	1.2Vdc	Baseplate	Negative	R6
AVO100-48S1V2PB-6L	1.2Vdc	Baseplate	Positive	R6

-

Ordering information

AVO100	-	48	S	1V2	Р	В	-	6	L
1)		2	3	4	5	6		7	8

1)	Model series	AVO: standard eighth-brick series
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
(4)	Rated output voltage	1V2: 1.2V output
5	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Base-plate	B: with baseplate; default: open-frame; S: SMT pin; T: SMT pin and tape reel package
7	Pin length	6: 3.8mm pin length
8	RoHS status	Y: Rohs, R5; L: RoHS, R6

Options

None

Page 3

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage						
Operating -Continuous Non-operating -100mS	All All	V _{IN,DC}	-	-	80 100	Vdc Vdc
Maximum Output Power	All	P _{O,max}	-	-	60	W
Isolation Voltage ¹						
Input to outputs Input to baseplate Outputs to baseplate	Open frame modules Baseplate modules Baseplate modules		- -	- -	2250 1500 750	Vdc Vdc Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Voltage at remote ON/OFF pin	All		-0.7	-	12	Vdc
Humidity (non-condensing)						
Operating Non-operating	All All		-	-	95 95	% %

Note 1 - 1mA for 60s, slew rate of 2000V/10s

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	V _{IN,DC}	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	-	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	$V_{\rm IN,OFF}$	30	-	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	-	3	V
Maximum Input Current $(I_O = I_{O,max})$	$V_{IN,DC} = 36V_{DC}$	I _{IN,max}	-	-	3.5	A
No Load Input Current $(V_O On, I_O = 0A, I_{VSB} = 0A)$	$V_{IN,DC} = 36V_{DC}$	I _{IN,no_load}	-	0.05	-	А
Standby Input Current	$V_{IN,DC} = 36V_{DC}$	I _{IN,standby}	-	0.005	0.015	А
Inrush Current Transient Rating			-	-	1	A ² S
Recommended Input Fuse	Fast blow external fuse recommended		-	-	10	А
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	-	100	-	uF
Input Reflected Ripple Current	Through 12uH inductor		-	-	40	mA
Operating Efficiency	$T_{A}=25 \ ^{O}C$ $I_{O} = I_{O,max}$ $I_{O} = 50\% I_{O,max}$ $I_{O} = 20\% I_{O,max}$	η	- - -	85.4 89.0 87.3	- -	% %

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

Table 3.	Output Specifications:
----------	------------------------

Parameter		Conditions ¹	Symbol	Min	Тур	Мах	Unit
Factory Set Voltage		$V_{IN,DC} = 48V_{DC}$ $I_O = I_{O,max}$	Vo	1.18	1.2	1.22	Vdc
Total Regulation		Inclusive of line, load temperature change, warm-up drift	v _o	1.15	1.2	1.25	Vdc
Output Voltage Line Reg	julation	All	±%V _O	-	0.1	0.2	%
Output Voltage Load Re	gulation	All	±%V _O	-	0.2	0.5	%
Output Voltage Tempera	ature Regulation	All	%V ₀	-	-	0.02	%/ ⁰ C
Output Voltage Trim Rar	nge	All	Vo	0.96	-	1.32	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	v _o	-	50	-	mV _{PK-PK}
Output Current		All	Ι _ο	0	-	50	Α
Output DC current-limit i	nception ²		Ι _ο	52.5	-	67.5	Α
V _O Load Capacitance ³		All	Co	330	-	40000	uF
V _o Dynamic Response		25%~50%~25% 25% load change slew rate = 0.1A/us	±V _O T _s	-	50 100	-	mV uSec
	Peak Deviation Settling Time	25%~50%~25% 25% load change slew rate = 1A/us	±V _O T _s	-	180 50	-	mV uSec
	Rise time	$I_{O} = I_{max}$	T _{rise}	-	7	-	mS
Turn-on transient	Turn-on delay time	$I_{O} = I_{max}$	T _{turn-on}	-	62	200	mS
	Output voltage overshoot	I _O = 0	%V ₀	-	0	-	%
Switching frequency		All	f _{SW}	-	165	-	KHz
Remote ON/OFF	Off-state voltage	All		-0.7	-	1.2	V
control (Positive logic)	On-state voltage	All		3.5	-	12	V
Remote ON/OFF	Off-state voltage	All		3.5	-	12	V
control (Negative logic)	On-state voltage	All		-0.7	-	1.2	V

Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Note 2 - Hiccup: auto-restart when over-current condition is removed.

Note 3 - High frequency and low ESR is recommended.

Artesyn Embedded Technologies

Output Specifications

Table 3. Output Specifications, con't:

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Output over-voltage protection ⁴	All	Vo	1.4	-	2.1	V
Output over-temperature protection ⁵ With baseplate Without baseplate	All All	T T	-	118 119	-	°C ⊃°
Over-temperature hysteresis	All	Т	-	5	-	°C
Output voltage remote sense range	All	Vo	-	-	0.12	V
MTBF	Telcordia SR-332- 2006; 80% load, 300LFM, 40 ^o C T _A		-	1.5	-	10 ⁶ h

Note 4 - Hiccup: auto-restart when over-voltage condition is removed.

Note 5 - Auto recovery. See Figure 10,11 test point.

Technical Reference Note

Rev.10.17.14_#1.1 AVO100-48S1V2 Page 7

AVO100-48S1V2 Performance Curves

Technical Reference Note

Rev.10.17.14_#1.1 AVO100-48S1V2 Page 8

AVO100-48S1V2 Performance Curves

Mechanical Specifications

Mechanical Outlines – Open Frame Module

AVO100-48S1V2

X.XXmm±0.25mm[X.XX in.±0.01in.]

Mechanical Outlines – Baseplate Module

AVO100-48S1V2B

Tolerance: X.Xmm±0.5mm[X.X in.±0.02in.] X.XXmm±0.25mm[X.XX in.±0.01in.]

Pin Length Option

Device code suffix	L
-4	4.8mm±0.25 mm
-6	3.8mm±0.25 mm
-8	2.8mm±0.25mm
None	5.8mm±0.25mm

-

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	Remote On/Off	Remote control
3	Vin-	Negative input voltage
4	Vo-	Negative output voltage
5	S-	Negative remote sense
6	Trim	Output voltage trim
7	S+	Positive remote sense
8	Vo+	Positive output voltage

Environmental Specifications

EMC Immunity

AVO100-48S1V2 power supply is designed to meet the following EMC immunity specifications:

Table 4. Environmental Specifications:

Document	Description	Criteria
EN55022, Class A Limits	Conducted and Radiated EMI Limits	/
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port	В
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port	В
IEC/EN 61000-4-4, Level3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.	В
IEC/EN 61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports	A
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port	В

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Recommend EMC Filter Configuration

See Figure 17

Safety Certifications

The AVO100-48S1V2 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

AVO100-48S1V2 Page 13

Table 5. Safety Certifications for AVO100-48S1V2 power supply system

Document	File#	Description
UL/CSA 60950		US and Canada Requirements
EN60950		European Requirements
IEC60950		International Requirements
GB4943		China Requirements
CE		CE Marking

Operating Temperature

The AVO100 series power supplies will start and operate within stated specifications at an ambient temperature from -40 °C to 85 °C under all load conditions. The storage temperature is -55 °C to 125 °C.

Thermal Considerations – Open-Frame module

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at these test points should not exceed the maximum values in Table 6.

For a typical application, forced airflow direction is from Vin- to Vin+, Figure 13 shows the derating of output current vs. ambient air temperature at different air velocity.

Page 14

Figure 12 Temperature test point

Table 6. Temperature limit of the test point

Test Point	Temperature Limit
Test point 1	112 °C
Test point 2	130 °C
Test point 3	114 °C

Figure 13 Output power derating

Thermal Considerations – Baseplate module

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at these points should not exceed the maximum values in Table 7.

For a typical application, forced airflow direction is from Vin- to Vin+, Figure 16 shows the derating of output current vs. ambient air temperature at different air velocity.

Figure 14 Temperature test point

Table 7. Temperature limit of the test point

Test Point	Temperature Limit
Test point 1	114 ^o C
Test point 2	114 °C

The converter can also operate with a smaller heatsink and sufficient airflow. For a typical application, forced airflow direction is from Vin- to Vin+. Figure 16 shows the derating of output current vs. ambient air temperature at different air velocity with a specified heatsink. The heatsink spec is shown in Figure 15.

Figure 15 Heatsink

Figure 16 Output power derating, 48Vin, air flowing across the converter from Vin- and Vin+

Assembly

The maximum length of the screw driven into heat-sink is 3.3mm.

Qualification Testing

Parameter	Unit (pcs)	Test condition		
Halt test	4-5	$T_{a,min}$ -10 °C to $T_{a,max}$ +10 °C, 5 °C step, V_{in} = min to max, 0 ~ 105% load		
Vibration	3	Frequency range: 5Hz \sim 20Hz, 20Hz \sim 200Hz, A.S.D: $1.0m^2/s^3,$ -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axis		
Mechanical Shock	3	30g, 6ms, 3axes, 6directions, 3time/direction		
Thermal Shock	3	-40 °C to 100 °C, unit temperature 20cycles		
Thermal Cycling	3	-40 °C to 55 °C, temperature change rate: 1°C/min, cycles: 2cycles		
Humidity	3	40 ^o C, 95%RH, 48h		
Solder Ability	15	IPC J-STD-002C-2007		

Application Notes

Typical Application

Below is the typical application of the AVO100-48S1V2 power supply.

Figure 17 Typical application

Recommended input fuse: LITTLEFUSE 216010.P 10A

C4: SMD ceramic-100V-1000nF-X7R-1210

C1: SMD ceramic-100V-100nF- \pm 10%-X7R-1206

C2: 100 μ F/100V electrolytic capacitor, high frequency and low ESR

C3: 1000 μ F/10V electrolytic capacitor, high frequency and low ESR

C5, C6: SMD ceramic-47nF/1000V/X7R-1210

L1: 1320uH- \pm 25%-4A-R5K-21 \times 21 \times 12.5mm

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVO100-48S1V2. The logic is CMOS and TTL compatible.

The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Feature characteristics" to ensure proper operation. The external Remote ON/OFF circuit in AVO100-48S1V2 is highly recommended as shown Figure 18.

Isolated remote ON/OFF circuit

Non-isolated remote ON/OFF circuit

AVO100-48S1V2 Page 19

Figure 18 External Remote ON/OFF circuit

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj_{-} down} = (\frac{511}{\Delta\%} - 10.22)k\Omega$$

$$R_{adj_{-}up} = (\frac{5.11 V_{out} (100 + \Delta\%)}{V_{ref} \Delta\%} - \frac{511}{\Delta\%} - 10.22)k\Omega$$

R_{adj_down}

Value of external adjustment resistor which shall be connected between Trim and -Sense for trimming down

\mathbf{R}_{adj_up}

Value of external adjustment resistor which shall be connected between Trim and +Sense for trimming up.

$\Delta\%$

Output voltage change rate against nominal output voltage.

V_{nom}: Nominal output voltage.

 $V_{ref} = 0.6V$

Where V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage. When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

Figure 19 Trim up

Internal side

Rev.10.17.14_#1.1 AVO100-48S1V2 Page 20

Figure 20 Trim down

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

Figure 21 Input ripple & inrush current output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical

C1: SMDceramic-100V-100nF-±10%-X7R-1206

C2: 100 μ F/100V electrolytic capacitor, high frequency and low ESR

C3: SMDceramic-10V-1 μ F- \pm 10%-X7R-1206

C4: 1000 $\mu F/10V$ electrolytic capacitor, high frequency and low ESR

Note - Using a coaxial cable with series 50ohm resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

Page 22

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminals of the load respectively to compensate the voltage drop on the transmission line.

If the sense compensation function is not necessary, connect S+ to V_o+ and S- to V_o- respectively.

Soldering

Rev.10.17.14_#1.1 AVO100-48S1V2 Page 23

√R6 Wave Soldering

The product is intended for standard manual, or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at $300 \text{ }^{\circ}\text{C} \sim 380 \text{ }^{\circ}\text{C}$ and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or simulative.

Product requirement		Remark	Product Name	
R6	Wave soldering	1.2V	AVO100-48S1V2B-6L	

√R6 Reflow/Wave Soldering

The product is intended for standard manual, reflow or wave soldering.

When reflow soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 10s.

When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at $300 \text{ }^{\circ}\text{C} \sim 380 \text{ }^{\circ}\text{C}$ and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Product requirement		Remark	Product Name	
R6	Wave soldering	1.2V	AVO100-48S1V2-6L	

Hazardous Substances Announcement (RoHS of China R6)

Parts	Hazardous Substances					
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE
AVO100-48S1V2	х	х	х	Х	Х	х
AVO100-48S1V2B	х	х	х	х	Х	Х

x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

 $\sqrt{2}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

1. Solders (including high-temperature solder in parts) contain plumbum.

- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832 Europe (UK) Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom +44 (0) 1384 842 211 Asia (HK) 14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Artesyn Embedded Technologies assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Artesyn Embedded Technologies, Artesyn and the Artesyn Embedded Technologies logo are trademarks and service marks of Artesyn Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. © 2014 All rights reserved.