BOURNS® - Designed for Complementary Use with BDX54, BDX54A, BDX54B and BDX54C - 60 W at 25°C Case Temperature - 8 A Continuous Collector Current - Minimum h_{FE} of 750 at 3V, 3 A MDTRACA 1 # This series is obsolete and not recommended for new designs. ### absolute maximum ratings at 25°C case temperature (unless otherwise noted) | RATING | SYMBOL | VALUE | UNIT | | | |---|------------------|------------------|------|---|--| | | BDX53 | | 45 | | | | Collector-base voltage (I _E = 0) | BDX53A | V | 60 | V | | | Collector-base voltage (IE = 0) | BDX53B | У СВО | 80 | ٧ | | | | BDX53C | | 100 | | | | | BDX53 | | 45 | | | | Collector-emitter voltage (I _B = 0) | BDX53A | V | 60 | V | | | | BDX53B | V _{CEO} | 80 | | | | | BDX53C | | 100 | | | | Emitter-base voltage | | V _{EBO} | 5 | V | | | Continuous collector current | | I _C | 8 | Α | | | Continuous base current | I _B | 0.2 | Α | | | | Continuous device dissipation at (or below) 25°C case temperature (see Note 1) | P _{tot} | 60 | W | | | | Continuous device dissipation at (or below) 25°C free air temperature (see Note 2 | P _{tot} | 2 | W | | | | Operating junction temperature range | T _j | -65 to +150 | °C | | | | Operating temperature range | T _{stg} | -65 to +150 | °C | | | | Operating free-air temperature range | T _A | -65 to +150 | °C | | | NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.48 W/°C. 2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C. ### electrical characteristics at 25°C case temperature (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | | | MIN | TYP | MAX | UNIT | |----------------------|--------------------------------------|--|---|---------------------|-------------------------------------|-----------------------|-----|--------------------------|------| | V _{(BR)CEO} | Collector-emitter breakdown voltage | I _C = 100 mA | I _B = 0 | (see Note 3) | BDX53
BDX53A
BDX53B
BDX53C | 45
60
80
100 | | | V | | I _{CEO} | Collector-emitter cut-off current | $V_{CE} = 30 \text{ V}$ $V_{CE} = 30 \text{ V}$ $V_{CE} = 40 \text{ V}$ $V_{CE} = 50 \text{ V}$ | $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ | | BDX53
BDX53A
BDX53B
BDX53C | | | 0.5
0.5
0.5
0.5 | mA | | I _{CBO} | Collector cut-off current | $V_{CB} = 45 \text{ V}$ $V_{CB} = 60 \text{ V}$ $V_{CB} = 80 \text{ V}$ $V_{CB} = 100 \text{ V}$ | $I_{E} = 0$ $I_{E} = 0$ $I_{E} = 0$ $I_{E} = 0$ | | BDX53
BDX53A
BDX53B
BDX53C | | | 0.2
0.2
0.2
0.2 | mA | | I _{EBO} | Emitter cut-off current | V _{EB} = 5 V | I _C = 0 | | | | | 2 | mA | | h _{FE} | Forward current transfer ratio | V _{CE} = 3 V | I _C = 3 A | (see Notes 3 and 4) | | 750 | | | | | V _{BE(sat)} | Base-emitter saturation voltage | I _B = 12 mA | I _C = 3 A | (see Notes 3 and 4) | | | | 2.5 | V | | V _{CE(sat)} | Collector-emitter saturation voltage | I _B = 12 mA | I _C = 3 A | (see Notes 3 and 4) | | | | 2 | V | | V _{EC} | Parallel diode forward voltage | I _E = 3 A | I _B = 0 | | | | | 2.5 | V | NOTES: 3. These parameters must be measured using pulse techniques, t₀ = 300 µs, duty cycle ≤ 2%. ### thermal characteristics | | PARAMETER | MIN | TYP | MAX | UNIT | |-----------------|---|-----|-----|------|------| | $R_{\theta JC}$ | Junction to case thermal resistance | | | 2.08 | °C/W | | $R_{\theta JA}$ | Junction to free air thermal resistance | | | 62.5 | °C/W | ### resistive-load-switching characteristics at 25°C case temperature | | PARAMETER | TEST CONDITIONS † | | | | TYP | MAX | UNIT | |------------------|---------------|--------------------------------|----------------------------|--|--|-----|-----|------| | t _{on} | Turn-on time | I _C = 3 A | I _{B(on)} = 12 mA | $I_{B(off)} = -12 \text{ mA}$ | | 1 | | μs | | t _{off} | Turn-off time | $V_{BE(off)} = -4.5 \text{ V}$ | $R_L = 10 \Omega$ | $t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$ | | 5 | | μs | [†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. ^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts. ### **TYPICAL CHARACTERISTICS** ### **TYPICAL DC CURRENT GAIN** vs **COLLECTOR CURRENT** TCS120AG 40000 $T_c = -40^{\circ}C$ 25°C $T_c = 100$ °C h_{FE} - Typical DC Current Gain 10000 1000 3 V = 300 μs, duty cycle < 2% 100 0.5 1.0 10 I_c - Collector Current - A ### Figure 1. ### COLLECTOR-EMITTER SATURATION VOLTAGE Figure 2. ### BASE-EMITTER SATURATION VOLTAGE #### PRODUCT INFORMATION ### **MAXIMUM SAFE OPERATING REGIONS** ### THERMAL INFORMATION ### MAXIMUM POWER DISSIPATION ### PRODUCT INFORMATION