

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

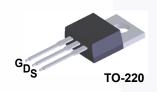
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

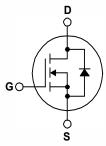
November 2013

FCP11N60F

N-Channel SuperFET[®] FRFET[®] MOSFET 600 V, 11 A, 380 m Ω

Features


- 650 V @T_J = 150°C
- Typ. $R_{DS(on)}$ = 320 m Ω
- Fast Recovery Type (t_{rr} = 120 ns)
- Ultra Low Gate Charge (Typ. Q_q = 40 nC)
- Low Effective Output Capacitance (Typ. C_{oss}.eff = 95 pF)
- · 100% Avalanche Tested
- · RoHS compliant


Application

- LCD/LED/PDP TV
- · Solar Inverter
- Lighting
- AC-DC Power Supply

Description

SuperFET® MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET FRFET® MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FCP11N60F	Unit	
V _{DSS}	Drain to Source Voltage			600	V	
I _D	Drain Current	- Continuous (T _C = 25°C)		11	Α	
	Drain Current	- Continuous (T _C = 100°C)		7		
I _{DM}	Drain Current	- Pulsed	(Note 1)	33	Α	
V _{GSS}	Gate to Source Voltage			±30	V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	340	mJ	
I _{AR}	Avalanche Current		(Note 1)	11	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	12.5	mJ	
dv/dt	Peak Diode Recovery de	v/dt	(Note 3)	4.5	V/ns	
P _D	Dawer Dissipation	(T _C = 25°C)		125	W	
	Power Dissipation	- Derate above 25°C		1.0	W/°C	
T _J , T _{STG}	Operating and Storage	ng and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Tempera 1/8" from Case for 5 Sec	ature for Soldering Purpose, conds		300	°C	

Thermal Characteristics

Symbol	Parameter	FCP11N60F	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	1.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max	62.5	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCP11N60F	FCP11N60F	TO-220	-	-	50

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charact	teristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_C = 25^{\circ}\text{C}$	600	-	-	V
		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_C = 150^{\circ}\text{C}$	-	650	-	V
$\Delta BV_{DSS} \ \Delta T_J$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.6	-	V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 11 A	-	700	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	1 10	μА
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
On Charact	teristics	00 100				
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu\text{A}$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 5.5 A	-	0.32	0.38	Ω
g _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 5.5 A	-	6	-	S
	haracteristics	, be b				
C _{iss}	Input Capacitance		-	1148	1490	pF
C _{oss}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$	-	671	870	pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz	-	63	82	pF
C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1.0 MHz	-	35	-	pF
C _{oss} eff.	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	95	-	pF
Switching (Characteristics				I .	
t _{d(on)}	Turn-On Delay Time		-	34	80	ns
t _r	Turn-On Rise Time	V _{DD} = 300 V, I _D = 11 A	-	98	205	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 25 \Omega$ (Note 4)	-	119	250	ns
t _f	Turn-Off Fall Time		-	56	120	ns
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 480 V, I _D = 11 A,	-	40	52	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	- /	7.2	-	nC
Q_{qd}	Gate to Drain "Miller" Charge	(Note 4)	-/	21	-	nC
Drain-Sour	ce Diode Characteristics Maximum Rati	ngs		•		
I _S	Maximum Continuous Drain to Source Diode Forward Current			-	11	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	33	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 11 A	-	-	1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 11 A	-	120	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	0.8	-	μС

Notes

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature.
- 2. I_{AS} = 5.5 A, V_{DD} = 50 V, R_G = 25 Ω , Starting T_J = 25°C.
- $3.~I_{SD} \leq 11~A,~di/dt \leq 200~A/\mu s,~V_{DD} \leq BV_{DSS,}~starting~~T_J = 25^{\circ}C.$
- 4. Essentially independent of operating temperature.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

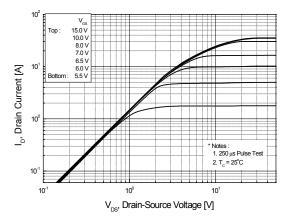


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

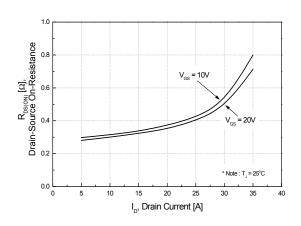


Figure 5. Capacitance Characteristics

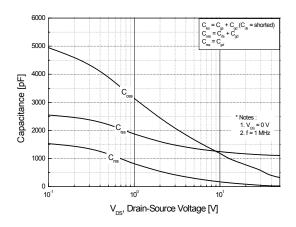


Figure 2. Transfer Characteristics

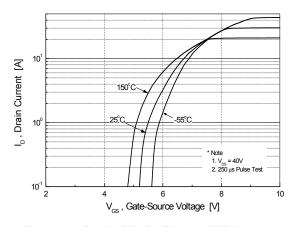


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

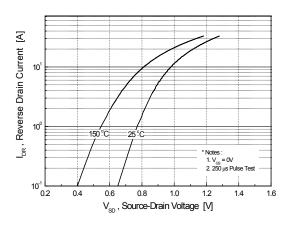
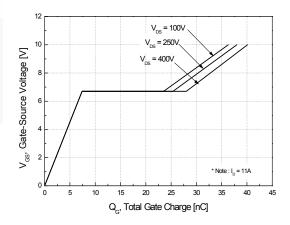



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

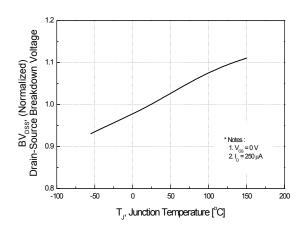


Figure 8. On-Resistance Variation vs. Temperature

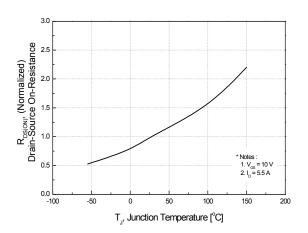
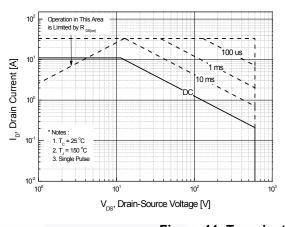



Figure 9. Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

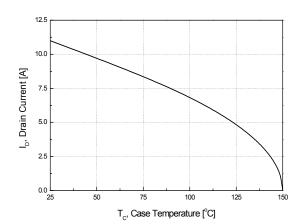


Figure 11. Transient Thermal Response Curve

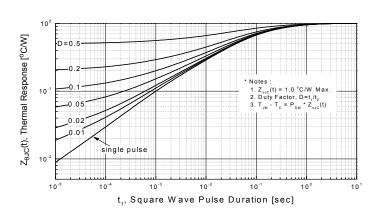


Figure 12. Gate Charge Test Circuit & Waveform

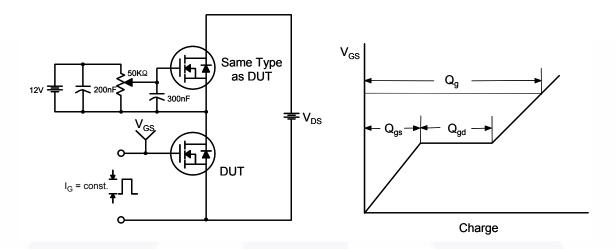


Figure 13. Resistive Switching Test Circuit & Waveforms

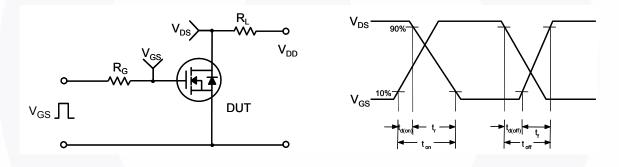
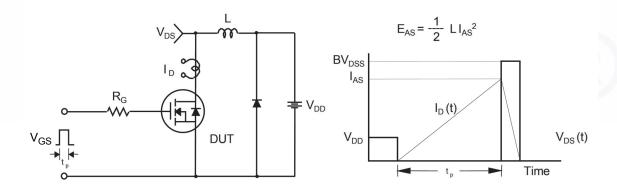



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

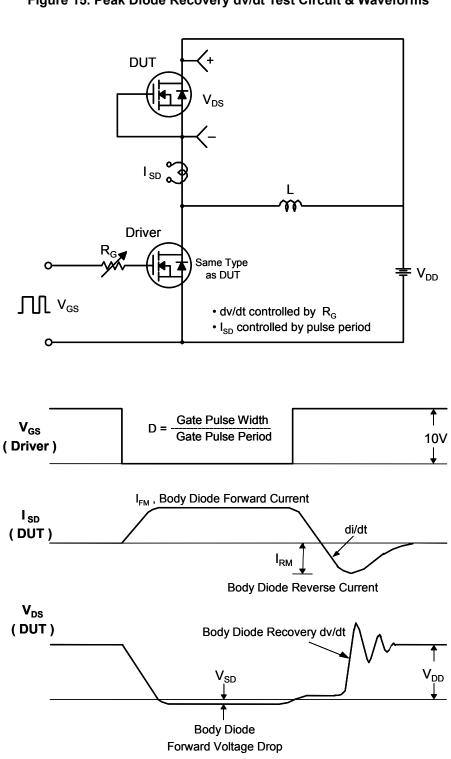
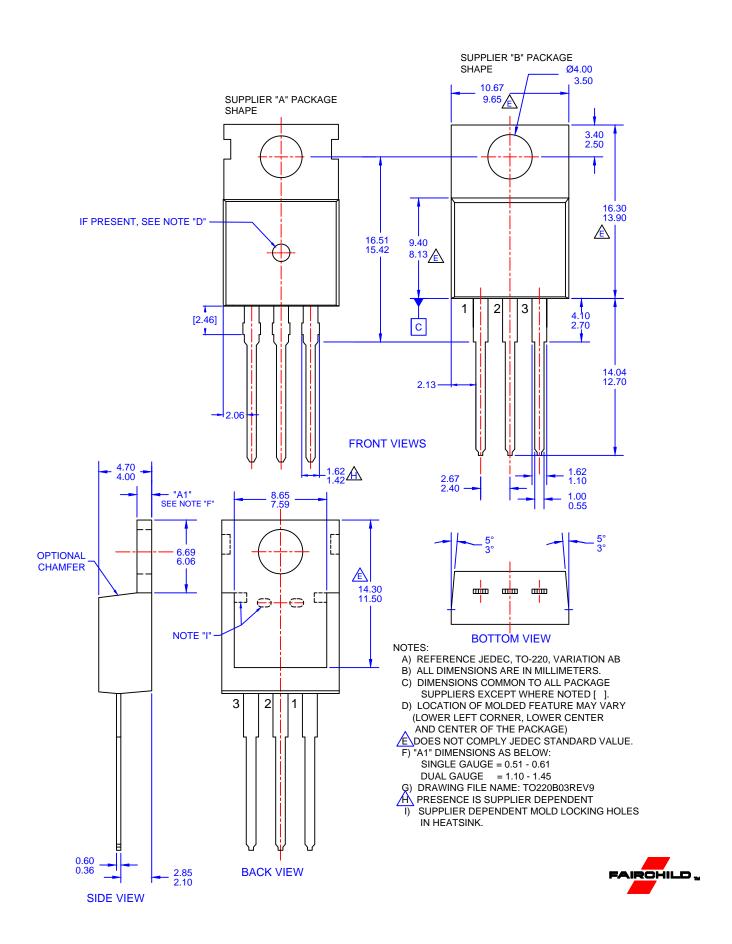



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative