

N-channel 600 V, 0.350 Ω typ., 8 A MDmesh[™] DM2 Power MOSFET in a PowerFLAT[™] 5x6 HV package

Datasheet - production data

Features

Order code	VDS	R _{DS(on)} max.	Iр
STL13N60DM2	600 V	0.370 Ω	8 A

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

• Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmeshTM DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STL13N60DM2	13N60DM2	PowerFLAT™ 5x6 HV	Tape and reel

DocID029284 Rev 2

1/15

This is information on a product in full production.

PowerFLAT[™] 5x6 HV

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	Packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
Vgs	Gate-source voltage	± 25	V	
ID	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	8(1)	А	
lD	Drain current (continuous) at Tc= 100 °C	5	А	
I _{DM} ⁽²⁾	Drain current (pulsed)	32	А	
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$	52	W	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	40	V/ns	
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns	
Tstg	Storage temperature range	- 55 to 150		
Tj	Operating junction temperature range	150	°C	

Notes:

⁽¹⁾The value is limited by package.

 $^{(2)}\mbox{Pulse}$ width limited by safe operating area.

 $^{(3)}\text{I}_{\text{SD}} \leq 8$ A, di/dt ≤ 400 A/µs; V_DS $_{\text{peak}} < V_{(\text{BR})\text{DSS}},$ V_DD = 400 V

⁽⁴⁾V_{DS} ≤ 480 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case max	2.40	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	59	°C/W

Notes:

 $^{(1)}\!When$ mounted on 1 inch² FR-4, 2 Oz copper board

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by $T_{\text{jmax}})$	2.5	А
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR},V_{DD} = 50 V)	340	mJ

2 **Electrical characteristics**

(T_C= 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	600			V
	Zoro goto voltago Droin	$V_{GS} = 0 V, V_{DS} = 600 V$			1.5	μA
IDSS	I _{DSS} Zero gate voltage Drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ $T_{C} = 125 \ ^{\circ}C^{(1)}$			100	μA
Igss	Gate-body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 25 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4 A		0.350	0.370	Ω

Table 5: On/off states

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	730	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	38	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	0.9	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 V to 480 V, V_{GS} = 0 V	-	70	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	5.1	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, \text{ I}_{D} = 11 \text{ A},$	-	19	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	4.4	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	9.9	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

	<u> </u>	able 7. Switching times				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	-	12.3	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	I	4.8	-	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	I	42.5	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	10.6	-	ns

DocID029284 Rev 2

Table 7: Switching times

 $\overline{\mathbf{A}}$

4/15

Electrical characteristics

Table 8: Source drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Isd	Source-drain current		-		8	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	А	
Vsd ⁽²⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 8 A$	-		1.6	V	
trr	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/µs,	-	90		ns	
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	252		nC	
Irrm	Reverse recovery current	switching and diode recovery times")	-	5.6		А	
trr	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/µs,	-	170		ns	
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	667		ns	
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	8.6		A	

Notes:

⁽¹⁾Pulse width is limited by safe operating area

 $^{(2)}$ Pulse test: pulse duration = 300 µs, duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

57

Electrical characteristics

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package mechanical data

57

Package mechanical data

Table 10: PowerFLAT™ 5x6 HV mechanical data					
Dim		mm			
Dim.	Min.	Тур.	Max.		
A	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D	5.10	5.20	5.30		
E	6.05	6.15	6.25		
E2	3.10	3.20	3.30		
D2	4.30	4.40	4.50		
е		1.27			
L	0.50	0.55	0.60		
К	1.90	2.00	2.10		

4.2 Packing information

Figure 22: PowerFLAT™ 5x6 tape (dimensions are in mm)

Package mechanical data

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
02-May-2016	1	First release.
07-Dec-2016	2	Document status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

